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1. Introduction 

Accurate prediction of Remaining Useful Life (RUL) in aircraft engines is of paramount 

importance in aviation maintenance, as it facilitates the early detection of potential failures, 

enabling timely maintenance or replacement of engine components. This, in turn, significantly 

enhances aviation safety and operational efficiency. In the context of this project, our primary 

focus lies on the preprocessing of sensor data and the development of a sophisticated machine-

learning model for RUL prediction. The ultimate goal is to harness data-driven techniques to 

uncover the underlying factors that influence RUL, subsequently building predictive models to 

address this crucial aviation challenge. This report offers an in-depth exploration of our project's 

objectives and findings. 

 

Predicting RUL is a mission-critical task in aviation maintenance, and this project leverages the 

extensive sensor data provided by the Commercial Modular Aero-Propulsion System Simulation 

(C-MAPSS) dataset to develop and validate a model for RUL prediction. By harnessing this wealth 

of sensor data, our aim is to make a meaningful contribution to the enhancement of aviation safety 

and operational efficiency. 

2. Data Preprocessing 

2.1 Calculation of Remaining Useful Life (RUL) 

The first step in our project involved calculating the RUL for each engine unit. This estimation 

was accomplished by identifying the maximum cycle count for each engine unit and subtracting 

the current cycle count from this maximum value. 

 
Figure 1: The x-axis represents time, while the y-axis corresponds to the variables. The significance of this 

visualization becomes evident as it reveals patterns, trends, and behaviors of the variables as RUL progresses. 



2.2 Data Visualization 

Following RUL calculation, we embarked on comprehensive data exploration. A multivariate time 

series plot, as shown in Figure 1, was generated to visualize the patterns exhibited by various 

variables in relation to RUL. Data visualization is a crucial step in enhancing our understanding of 

the dataset. It aids in data quality assessment, informative variable selection, and informed 

decision-making for subsequent modeling and analysis. 

2.3 Preprocessing Steps 

2.3.1 Mean and Standard Deviation Calculation:  

Some sensors in the dataset exhibited constant, flat-line behavior. To identify these uninformative 

variables, we calculated both the mean and standard deviation for all sensors. A standard deviation 

close to zero indicated a lack of variability, making these sensors less valuable for RUL prediction. 

As presented in Table 1, Setting 3 and sensors 1, 5, 10, 16, 18, and 19 exhibited zero standard 

deviation, confirming their constant values. It became evident that these sensors should be 

excluded from our predictive modeling efforts. 

Table 1: Mean and Standard Deviation of All Features 

 

2.3.2. Correlation Analysis:  

Correlation analysis was a vital step in assessing the relationships between variables and RUL. 

The Spearman correlation method was chosen for its ability to capture non-linear relationships and 

handle ordinal data, which are common characteristics of time series data. The correlation results, 

visualized in a heatmap, supported our earlier observations. Sensors with a correlation coefficient 

of 0 with RUL, such as Setting 3, Sensor 1, Sensor 5, Sensor 10, Sensor 16, Sensor 18, and Sensor 

19, were identified as unsuitable for analysis. Additionally, Setting 1, Setting 2, Sensor 6, and 

Sensor 14 exhibited relatively smaller correlation coefficients with RUL, indicating their lower 

predictive value compared to other variables. These findings guided our variable selection, 

emphasizing the importance of prioritizing sensors with stronger RUL correlations. 

 



 
Figure 2: Correlation Heat Map 

 

2.3.3. Granger Causality Analysis:  

Granger causality analysis was employed to assess the causal relationship between two time series 

variables, enabling an understanding of which variables influence others. It is valuable for 

predicting the impact of one variable on another within a multivariate time series. The p-value in 

Granger causality tests signifies the statistical significance of these causal relationships. When the 

p-value exceeds 0.05, it indicates that the variables are not causally related, establishing a clear 

threshold for assessing causality. It is noteworthy that we removed sensors with constant values 

from this analysis, as the Granger test does not consider variables with no variation. This step is 

vital for precise predictive modeling. 

Table 2 :. P-values from the Granger Causality Test with Lag = 1 

 
 



2.3.4. Principal Component Analysis (PCA):  

PCA was used to assess the variance explained by principal components and consider 

dimensionality reduction. The results revealed that the first two principal components accounted 

for approximately 78% of the total data variance. Importantly, there was no clear "elbow point" 

where explained variance significantly diminished, indicating that further dimensionality 

reduction would not significantly impact the dataset's richness. Therefore, we retained all variables 

for our analysis. 

 

 

Figure 3: Variance Explained by Principal Components 

 

Data preprocessing played a crucial role in optimizing our dataset by retaining key variables while 

excluding uninformative ones. This focused dataset ensures that our subsequent predictive models 

are built on the most relevant features. The analysis of Granger causality, Spearman correlation, 

and PCA enriched our understanding of the data's dynamics and relationships between variables. 

With this refined dataset, we are well-equipped to develop accurate RUL prediction models, 

enhancing the effectiveness of aircraft engine maintenance. 

 

3. Model Development 

In our modeling phase, we employed a comprehensive evaluation strategy, utilizing both Mean 

Absolute Error (MAE) and Mean Squared Error (MSE) as evaluation metrics. We chose this 

approach as each metric offers unique insights into our model's performance, addressing different 

aspects of our objectives. MAE provides interpretability and robustness to outliers, offering 

insights into the average magnitude of errors between predictions and actual values. MSE, on the 

other hand, is sensitive to outliers and is compatible with mathematical optimization, providing a 

nuanced view of our model's accuracy. By utilizing both MAE and MSE, we aimed to conduct a 

thorough evaluation that balances outlier-resistant performance assessment and optimization 



suitability, leading to a well-rounded and informed assessment of our model's capabilities. This 

approach accommodates the diverse characteristics and priorities in our analysis, resulting in a 

more robust model evaluation. 

 

3.1 Linear Regression 

Our initial modeling approach employed Linear Regression, a foundational machine learning 

technique that establishes a linear relationship between RUL and other sensor readings. Linear 

regression seeks to find the best-fitting linear equation by minimizing the sum of squared 

differences between predicted and observed values. The Mean Absolute Error Loss observed was 

27.179516 RUL’s and Mean Squared Error Loss was 27.179516 RUL’s as well. 

 

 
Figure 4: Linear Regression Result 

 

3.2 Support Vector Regression (SVR) 

Support Vector Regression (SVR) proved to be a versatile choice for our multivariate time series 

analysis, given its flexibility in capturing complex data relationships. We explored SVR with 

various kernel functions, including polynomial, radial basis function (RBF), and linear kernels. 

Notably, the linear kernel demonstrated the best performance, possibly due to the linear regression 

pattern present in the RUL we aimed to predict. We experimented with different regularization 

parameter (C) values, settling on C = 1 as it struck a balance between fitting the training data 

closely and model generalization. Additionally, the impact of data normalization on SVR 

performance was examined, revealing that normalized data consistently outperformed non-

normalized data. This underscores the crucial role of data preprocessing in enhancing SVR's 

capabilities for multivariate time series regression, resulting in improved predictive accuracy and 

model generalization. The Mean Absolute Error Loss observed was 26.1129 RUL’s and Mean 

Squared Error Loss was 1072.585 RUL. 



 
Figure 5: Support Vector Regression Result 

 

3.3 Long Short-Term Memory) (LSTM)  

Recognizing the importance of capturing the time series nature of our data, we opted for a Long 

Short-Term Memory (LSTM) network. Unlike traditional recurrent neural networks (RNNs), 

LSTMs are well-suited for sequences of varying lengths due to their ability to capture long-range 

dependencies and avoid vanishing gradient issues. For our LSTM architecture, we incorporated 

two LSTM layers with hidden sizes of 64 and 32, with batch normalization in between. This was 

followed by a fully connected layer. We employed the Adam optimizer with a learning rate of 

0.001 for training. The decision to use LSTMs was rooted in the time series nature of the data and 

the need to capture temporal dependencies. 

 

The choice of two LSTM layers in our architecture enhances the model's capacity to capture 

complex temporal patterns and dependencies, catering to both short-term and long-term 

relationships within the data. Batch normalization contributes to training stability by mitigating 

gradient-related issues and reducing overfitting. The Adam optimizer, with its adaptive learning 

rates and a rate of 0.001, combines momentum and RMSprop benefits, promoting efficient 

convergence and robust optimization. This approach balances model stability, speed, and accuracy 

for effective time series modeling. 

 

 
Figure 6: Training Loss and Evaluation Loss along 100 Epochs 



After experimenting with sequence sizes ranging from 50 to 5, a sequence size of 30 was 

determined to be optimal for balancing temporal information and model complexity. Training was 

conducted for 100 epochs, during which the model's training loss significantly decreased, 

indicating effective learning. Continuous monitoring of the evaluation loss revealed that it 

remained stable, signifying a well-balanced approach that avoids overfitting. Our approach 

highlights the importance of flexible stopping criteria. By experimenting with different criteria and 

vigilant performance monitoring, we ensure the model is trained to capture valuable insights 

without unnecessary complexity. The Mean Absolute Error Loss observed was 9.4772 RUL’s. 

 
 

Figure 7: LSTM Result 

 

 

3.4 Model Selection Rationale 

The choice of models reflects a progressive refinement aimed at achieving optimal predictive 

accuracy. Each model offers unique strengths, addressing different aspects of the multivariate 

dataset and the temporal characteristics of the data. 

 

4. Results 
 

4.1 Post Processing  

In our project, we evaluated the performance of three different algorithms for predicting 

Remaining Useful Life (RUL) in aircraft engines. The Linear Regression (LR) model achieved a 

Mean Absolute Error (MAE) of 271.179, indicating its ability to capture some aspects of the data's 

semi-linear shape. Similarly, the Support Vector Regression (SVR) model exhibited an MAE of 

26.112 and demonstrated its capability to handle the data's linearity. However, both the LR and 

SVR models faced limitations when predicting RUL values, as they occasionally produced 

negative results, which are physically implausible in this context. 

 

In contrast, our Long Short-Term Memory (LSTM) model outperformed the other algorithms, 

yielding the lowest MAE of 9.477. The LSTM model's success can be attributed to its inherent 



ability to capture temporal dependencies within the data. Furthermore, its robustness is highlighted 

by the absence of negative RUL predictions, emphasizing its superior alignment with the data's 

temporal dynamics. 

5. Conclusion 

The LSTM model's impressive performance underscores its effectiveness in modeling the complex 

temporal patterns of aircraft engine data. For the prediction of RUL, an essential parameter in 

aircraft maintenance, the LSTM model offers a superior solution. Its robustness, adaptability to 

time series data, and accurate predictions make it a valuable tool for the aviation industry. 

 

6. Future Work 

6.1 eXplainable Artificial Intelligence (XAI) and Post-Processing 

To enhance model interpretability and transparency, we recommend the exploration of 

eXplainable Artificial Intelligence (XAI) techniques. XAI tools can provide insights into the 

LSTM model's decision-making processes, allowing for a deeper understanding of its predictions. 

Techniques such as SHAP (SHapley Additive exPlanations) values, LIME (Local Interpretable 

Model-agnostic Explanations), and feature importance analysis can help shed light on the factors 

driving the RUL predictions. 

 

Additionally, post-processing steps can be applied to further refine the predictions and handle edge 

cases. This might involve setting a threshold to ensure that negative RUL values are automatically 

adjusted to zero, reflecting the practical constraints of the problem. 

 

In conclusion, our project demonstrates the potential for advanced machine learning models like 

LSTM to significantly improve the prediction of aircraft engine RUL, ensuring safer and more 

efficient maintenance practices. By incorporating XAI techniques and thoughtful post-processing 

steps, we can further enhance the reliability and transparency of such models in real-world 

applications. This research has far-reaching implications for the aviation industry, contributing to 

enhanced safety, reduced maintenance costs, and improved operational efficiency. 
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